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Conservation laws and transverse motion of energy on 
reflection and transmission of electromagnetic waves 

V G Fedoseyev 
Institute of Physics, Estonian SSR Academy of Sciences, 202400 Tartu, USSR 

Received 16 June 1986. in final form 25 November 1987 

Abstract. The conservation laws for the process of reflection and transmission ofelectromag- 
netic waves on a plane interface of isotropic transparent media are determined. Using 
these laws, relations have been established between the transverse shift (TS) of a centre of 
gravity of reflected and transmitted wavepackets, the change of the normal component of 
the intrinsic Minkowski angular momentum of the electromagnetic field and the Abraham 
transverse momentum (or the transverse electromagnetic power flow (TPF)). The previous 
investigations of the TS and TPF phenomena are discussed from the point of view of 
conservation laws. 

1. Introduction 

The transverse shift (TS) of a totally reflected light beam was predicted three decades 
ago (Fedorov 1955, Kristoffel 1956). Since that time a number of theoretical papers 
devoted to the TS phenomenon have been published. There are different opinions both 
about the conditions of the existence of this effect and its value. 

From the physical point of view the TS is a consequence of a transverse power flow 
(TPF). For a long time the TPF has been assumed to be associated with Fresnel’s 
evanescent waves or, more generally, with inhomogeneous waves (Wiegrefe 1914, 
Fedorov 1955, 1977, Kristoffel 1956, Imbert 1972). On the basis of this assumption a 
method of calculation of the TS of a totally reflected light beam has been developed 
(Kristoffel 1956, Imbert 1972, Fedorov 1977). This method is usually called the 
‘energy-flux method’. 

Schilling (1965) has calculated the TS of a reflected light beam using the stationary- 
phase method. In the case of total reflection, his result numerically differs from that 
obtained by the energy-flux method. It also follows from Schilling’s paper that the 
elliptically polarised light beam should undergo a TS not only in the case of total but 
also of partial reflection. However, Schilling does not give the physical reason for the 
TS of a partially reflected light beam. 

De Beauregard (1965) has considered the TS of the totally reflected light beam as 
a ‘translational inertial spin effect’. The value of the TS calculated by him is different 
from the values obtained by the ‘energy-flux method’ and the stationary-phase method. 

In an earlier paper of the author (Fedoseyev 1985) the TS of a transmitted elliptically 
polarised light beam was predicted. In this paper, the TS has been considered as a 
change of the transverse coordinate of the wavebeam’s centre of gravity on reflection 
and refraction. For total reflection such a definition of TS has been used by Boulware 
(1973). 
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The TS of a light beam on total reflection was first observed by Imbert (1972). 
Other experimental investigations of the TS of the totally reflected electromagnetic 
wavebeams were later performed (de Beauregard et a1 1977, Pun’ko and Filippov 1984, 
1985). 

In connection with Imbert’s experiments it was discussed which of the two methods, 
either energy-flux or stationary-phase, agrees with the experimental value of the TS of 
a totally reflected light beam (Imbert 1972, Ashby and Miller 1973, 1977, Boulware 
1973, de Beauregard er al 1977). Imbert (1972) found that the experimental value of 
the TS agreed with that calculated by the energy-flux method, but a more detailed 
analysis of his experimental conditions showed that the experimental value of the TS 

agreed with that calculated by the stationary-phase method (Ashby and Miller 1973, 
Boulware 1973). In the course of the discussions it was not established why the 
energy-flux and stationary-phase methods give different results for the TS of a totally 
reflected light beam. 

In the present paper, we investigate the TS and TPF phenomena in a general way: 
from the point of view of the conservation laws valid in the case of reflection and 
refraction of electromagnetic waves on the plane interface of two isotropic transparent 
dielectric media. Based on the conservation laws, we will obtain the relations between 
the TS of the centre of gravity of the electromagnetic field, the TPF and the change of 
an intrinsic angular momentum of the electromagnetic field. 

Our analysis allows for the electromagnetic field in both media. In this respect our 
approach differs from that of de Beauregard er a1 (1971) who analysed energy- 
momentum quanta in Fresnel’s evanescent wave without properly considering the 
electromagnetic field in a denser medium. 

2. Conservation laws 

First we consider the conservation laws for an electromagnetic field embedded in the 
space filled with two half-infinite immobile isotropic transparent dielectric media 
separated by a plane interface. E ( ’ )  and E ( ~ )  are the relative dielectric permittivities of 
the first and the second media and n(1,2)  = ( E ( ’ * ” ) ’ ’ *  are the refraction indices of the 
media. For simplicity, the dispersion of dielectric permittivities is not taken into 
account and the relative magnetic permeability in both media is taken equal to unity. 

Denote by E ( x ,  t )  and H ( x ,  r )  the electric and magnetic field vectors at an arbitrary 
space point x = ( x l ,  x2, x 3 )  and at an arbitrary instant r. Suppose that IE(x, t) l  and 
lH(x, t)l decrease faster than l ~ / - ~ ’ *  if 1x1 + W. 

2.1. Energy and momentum 

The energy and momentum conservation laws are written in a differential form as 
follows (Moller 1972, Ginsburg 1973): 

= 0  a T L ( X ,  t )  
axk 

where T k ( x ,  t )  is the Minkowski energy-momentum tensor 
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and i, k = 1,2,3,4;  CY, /3 = 1,2,3;  x4= it. s(x, t )  is the Poynting vector 

s(x, t )  = ( 1 / 4 ~ ) E ( x ,  t )  X H ( x ,  t ) .  (3) 

The light velocity in vacuum is taken equal to unity, hence s(x, t )  coincides with the 
Abraham momentum density. g(x, t )  is the Minkowski momentum density 

g(x, t )  = q x ,  t )  (4) 
where S =  E ( ' )  in the first medium and ;= E ( ' )  in the second medium. w(x, t )  is the 
electromagnetic energy density 

w(x, t) = (1 /8~) (Z lE(x ,  t)12+IH(x, t ) i 2 ) .  

U a p ( X ,  t )  = (1/4.?r)(%(x, t ) E p ( x ,  t ) +  H o b ,  t ) H p ( X ,  t ) >  - fjapW(X, t )  

( 5 )  

( 6 )  

r m p ( x ,  t )  is the Maxwellian stress tensor: 

where 6,, is the Kronecker symbol. 
Let us direct the x1 axis perpendicular to the interface. azl(x, t )  and ( ~ 3 1 ( ~ ,  t )  as 

well as s,(x, t )  are continuous at the interface. Hence, integrating (1) over total space 
for i = 2,3,4 we obtain three conservation laws: 

a W( t ) / a t  = 0 (7a) 

aG2,3( t ) / d t  = 0 (7b) 
where W (  t )  is the electromagnetic energy 

W ( t ) =  W =  w(x, t )  dx 

and G ( t )  is the Minkowski momentum 
i 

G ( t )  = g(x, t )  dx. I 
Let us direct the x2  axis perpendicular to the vector G ( t )  at the initia1 instant of 

time. Then at an arbitrary time 

G2( t )  = 0 ( 9 0 )  

G3( t )  = G3 = constant. (9b) 
Now consider the Abraham momentum 

S ( t )  = s(x, 1 )  dx. (10) I 
One can express S ( t )  as S ( t )  = S ( ' ) ( t ) + S ' 2 ' ( t ) ,  where S"'( t )  and S")( t )  are the 
Abraham momenta in the first and second media, respectively. S ( 1 * 2 ) ( t )  are defined 
by (IO) when the integration is performed over the volume of the first or second media, 
respectively. By using (4) and ( s a )  one obtains 

(11) E ( ' ' $ ' ) (  t )  + E(2)Si2)(r) = o 
and hence 

Si"( t )  = (1 - E - l ) - I s z (  t )  

where E = E ' ~ ' ( E ( ' ' ) - '  
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2.2. Angular momentum 

Let us consider the angular momentum 4-tensor (Moller 1972) 

u a ! k ( t )  = i  (x,Tk4(x, t)-Xkzd(X, t ) )  dx. I 
Differentiating (13) for i = 2, k = 3 and taking into account (1) as well as the continuity 
of uzl(x, t )  and u 3 , ( x ,  t )  at the interface we obtain 

a M , ( t ) / a t  = O  (14) 

where M , ( t )  =A23(t). M , ( t )  is the normal, with respect to the interface, component 
of the angular momentum of the electromagnetic field 

M (  t )  = x x g(x, t )  dx. I 
(Throughout this paper only the Minkowski angular momentum is considered.) 

Let us split M ( t )  into two parts: 

M (  t )  = L( t ) + Z ( t ) .  (13b) 

L ( t )  is the orbital angular momentum (or the angular momentum of the centre of 
gravity of the electromagnetic field) 

(15) L( t )  = X( t )  x C (  t )  

where X ( t )  is the radius vector of the centre of gravity of the electromagnetic field 

X ( t )  = W-' x w ( x ,  t )  dx (16) I 
I (  t ) = I (x  - X (  t )) x g (x, t ) dx. 

and I (  t )  is the intrinsic angular momentum of the electromagnetic field 

(17) 

Substituting (15) into (13b) and the result into (14) and making use of ( 7 b )  we obtain 

ax2( t ) / a t  = -( 1/G3)aI,(  t ) / a t .  (18) 

2.3. TS of the electromagnetic jield 

Let us define the TS of the electromagnetic field for a time interval t 2 -  t ,  as follows: 

h = X , ( t , ) - X , ( t , ) .  (19) 

Integrating (18) we obtain the relation between h and the change of the normal 
component of the intrinsic angular momentum of the electromagnetic field for the time 
interval t2 - t , :  

h = -G;'AI, (20) 

A I ,  = 1, ( f 2 )  - 1, ( t l ) .  (21) 

where 
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On the basis of differential conservation law (1) for i = 4, one can also obtain a 
relation between the TS of the electromagnetic field and the integral Abraham momen- 
tum. Let us differentiate (16). On the right-hand side of the result use the equation 

(i.e. (1) for i = 4), and after that perform the integration by parts, taking into account 
that s,(x, t )  is continuous at the interface. Then we get 

ax,( t ) / a t  = w-'s2( t ) .  ( 2 2 )  

Integrating ( 2 2 ) ,  we obtain 

h = W-' & ( t )  dt. 1.: 
3. Reflection and transmission of an electromagnetic wavepacket 

Let us now consider the process of reflection and transmission of a time- and space- 
restricted quasimonochromatic packet of electromagnetic waves (pulse of waves). 
Suppose that the packet impinges upon the interface from the first medium (the upper 
medium in figure 1). Assume that the incident packet is far enough from the interface 
at the initial instant of time t l  (figure l (a)) ,  such that one can neglect the influence 
of the second medium on the incident packet at this instant of time. Analogously, 
assuming that the reflected and transmitted packets are far enough from the interface 
at the instant of time tZ, one can neglect the influence of the second medium on the 
reflected packet and the influence of the first medium on the transmitted one at this 
instant of time (figure l (c)) .  At the intermediate time interval three packets coexist 
(figure l (b ) ) .  

(0 I lb) ( c l  

Figure 1. The scheme of the partial reflection and transmission (upper)  and of the total 
reflection (lower) of the time-restricted wavepacket (full  lines) and of the wavebeam (broken 
lines). 
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The field quantities of the incident packet will be denoted by an upper index ( i )  
and the field quantities of the reflected and transmitted packets by upper indices (p)  
and ( r ) .  Further we will use the common notation t, for t ,  and t2 as follows: tl = t ,  if 
j = i a n d  t J = r 2 i f j = p o r r .  

In the appendix, definitions of some field quantities for the j th  wavepacket at the 
instant t, are given and calculations of some quantities are presented. 

Each wavepacket is characterised by three orthogonal unit vectors f+, m'" and b'" 
(figure 2), where a is the unit vector directed along the x2 axis, 

m'"= / ~ " ( t , ) ~ - ' ~ ' ' ) ( t ~ )  ( 2 3 ~ )  

b'J' = a x ""* (23b)  

The angle between the x1 axis and the vector m'" is the angle of incidence, 8 (see 
figure 2) .  

and 

Figure 2. Reflection and transmission geometry. In the case of total reflection G ( " ( f 2 )  = 0. 

Denote the dimensions of the incident packet in m'", a and b") directions at the 
instant oftime I ,  by D,, D, and Db. Suppose that D, >> Db. As the incident wavepacket 
is quasimonochromatic, >> A where A is the mean vacuum wavelength of the packet. 
Since the packets are far enough from the interface at the instants t l  and f 2 ,  the 
condition tz - t l  > n'l)D, should be fulfilled. We neglect the diffusion of the packets 
during the time interval t2 - t ,  , for which the condition 

A ( r 2 - t l ) "  D ' , . b  

should be fulfilled. 
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The relations between the quantities characterising the incident, reflected and 
transmitted quasimonochromatic wavepackets are approximately (in the zeroth order 
in AD,’,) the same as those between the quantities characterising the plane electromag- 
netic waves with the wavevectors k”’ = 2m‘”h-’m I J ’ .  The vectors kip' and k“’ are 
connected with k‘” by Snell’s laws. 

The process of the reflection and transmission of the quasimonochromatic 
wavepacket on the plane dielectric interface is a special case of the process considered 
in the previous section. Hence, the conservation laws (7a, b )  and (14) are valid for 
this process. Relations (12a, b ) ,  (20) and (22a) are also valid, but they can be specified 
in this case as follows. 

Denote the TS of the reflected and transmitted wavepackets by h‘”’ and h“’. Let 
us define h ‘ p ’  and h“’ as the differences of x2 coordinates of the centres of gravity of 
the reflected and transmitted wavepackets at the instant of time t2 and the centre of 
gravity of the incident packet at the instant t l  (figure 3): 

x : q  t 2 )  - X:l’( t’). (24) 

(25) 

h 1 P . T )  = 

One can obtain from (19), (24) and (AlOd) that 
h = Rh‘P’+ n‘‘) 

where R = W ( P ) ( f 2 )  W-’, T = W ( T i ( t 2 )  W-’ and R +  T =  1 (see (AlOa)). In the zeroth 
order in AD, :  the quantities R and T are the reflectivity and transmissivity of the 
plane electromagnetic wave with the polarisation vector e“’ (A12a) and the wavevector 
k‘” (Born and Wolf 1964). 

Consider relation (20). As W“’( t l )  = W and G$”( t l )  = G3, then using (A17) we get 

G3 = n“’ W sin 8. (26) 
At the instant of time t2 the normal component of the intrinsic angular momentum of 
the electromagnetic field is equal to the sum of the normal components of the intrinsic 
angular momenta of the reflected and transmitted packets (A19) (note that such 

1 

Figure 3. The pattern of the TS of a reflected and transmitted wavepacket. In the case of 
total reflection there is no transmitted packet. The ratios of the TS to  the dimensions of 
the packets are increased many times in comparison with their real values. 
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affirmation is correct only for the Minkowski angular momenta). By means of (21), 
(25), (26) and (A19) relation (20) takes the form 

where 

2n- 
AW 

F = -- (Z(”( t 2 )  + I ( ” (  t 2 )  - I“ ’ (  t l ) ) .  

The scheme of the calculation of angular momentum of the electromagnetic field in 
vacuum is well known (see e.g. Akhiezer and Berestetskii 1965). In the appendix, the 
calculation of Z(”(t,) is performed according to this scheme. A substitution of (A9a)  
into (27) yields 

(270) F = i(Re(P) e ( P ) *  + ~ ~ ( 7 )  e i T 1 *  - e ( J ) * ) .  

Substituting (27a) into (20a)  we obtain the relation between the TS of the centre of 
gravity of the reflected and  transmitted wavepackets and the change of the polarisation 
vector on  reflection and  transmission of the packet. 

The vector F can also be expressed through the components of the electric field 
vector of the incident packet. Let us present the polarisation vector of the j t h  
quasimonochromatic wavepacket as 

A(JJa + B‘JjbiJj 
(28) e ( J i  = 

/AcJ)12+ lBi’i12 

where A(J’ and  B ( J )  are the transversal and planar components of the electric field 
vector of the j t h  packet (cf Fedorov 1977, Fedoseyev 1985). Substituting (28) into 
(27a)  and  using Fresnel’s laws one gets after some algebra 

where T~ and T~~ are the field transmission coefficients of the plane electromagnetic 
wave with the wavevector k‘” and with the polarisation denoted by lower indices (Born 
and Wolf 1964). 

Consider relation (22a).  It can be compared with the result obtained by means of 
the energy-flux method. For that let D, tend to infinity, with the assumption that the 
electromagnetic field inside the incident packet is independent of x2. Denote 

S A  t )  = DJ2( t )  (29) 

and  similarly 

S$’,2’( t )  = D,P:‘J’( t ) .  

P 2 ( f )  is the TPF, i.e. the power transported through the x2 = constant plane, Pi’)(  t )  and 
P:”(t) being the TPF in the first and the second media. Substituting (29) and (29a)  
into ( 1 2 4  b )  one gets 

Pk”(t) = ( 1  -&-1)-1P2(t) (300) 

P:”(t) = (1 -&) - IP*( t ) .  i30b) 

A t  = n“’D, (31) 

The incident packet contacts the interface during the time interval 
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(we take into account that D, >> Dh) .  Assume that the incident packet at the instant 
of time t ,  is nearly homogeneous along the coordinate x:) = m‘” x in its main part. 
Then taking into account (29) and (31), one gets 

where P2 is the mean value of the TPF during the time interval, when the incident 
packet gets into contact with the interface. P2 = P2( to) where to is the instant of time 
at which the middle part of the incident packet gets into contact with the interface 
(figure l (b ) ) .  Substituting (25) into the left-hand side of (22a) and (32) into its 
right-hand side, we obtain 

(226) RA(&”+ m(‘)= n( l ) v - ’P  
2 

where v = (DaDm)-’ W is the electromagnetic energy of a part of the incident packet 
of unit dimensions in the m‘” and a directions. 

Finally, let us note that the TS of the reflected and transmitted time-restricted 
wavepackets coincide in the zeroth approximation with the TS of the reflected and 
transmitted wavebeams. It is easy to be convinced of this if, in the incident wavebeam 
with the mean wavevector k ‘” ,  one mentally distinguishes a part of the length D, 
which at the instant of time t ,  occurs in the same position as the wavepacket (figure 
l ( a ) )  and traces its motion during the time interval t2 - t l  (figure l (b ,  c ) ) .  

4. Conclusions and discussion of results 

Our reasoning proceeds from the fact that electromagnetic energy, the components of 
the Minkowski momentum parallel to the interface and the component of the Mink- 
owski angular momentum normal to the interface are the constants of motion of the 
electromagnetic field in a space filled with two isotropic dielectric media separated by 
a plane interface. 

On the basis of these constants of motion we have established the following relations 
between the phenomena associated with the process of reflection and transmission of 
electromagnetic waves on the plane interface. 

(1) The relation between the transverse Abraham momenta in the first and second 
media (equations (11) and (12a, b ) )  or the relation between the TPF in the first and 
second media, if the incident wavepacket is nearly homogeneous in the transverse 
direction (30~1, b ) .  

(2) Two relations involving the TS of the centre of gravity of the reflected and 
transmitted quasimonochromatic wavepackets h (25) as follows. 

(i) The relation between h and AI, = t z )  + Z ‘ i r ) ( t 2 )  - Z\”( t , )  (equations ( 2 0 a )  
and ( 2 7 ) ) ,  where I \p) (  t 2 )  and I\‘)( t , )  are the normal components of the Minkowski 
angular momenta of the reflected and transmitted wavepackets at the final instant of 
time t 2  and I\’)(  t , )  is that of the incident wavepacket at the initial instant of time t l  . 
This relation can also be transformed to that between h and the change in the 
polarisation vector on reflection and transmission (equations (20a) and ( 2 7 ~ ) ) .  

(ii) The relation between h and the integral transverse Abraham momentum (22a). 
If the incident wavepacket is long and nearly homogeneous, this relation goes over 
into that between h and the TPF (226). 
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Earlier, the relation between the TS and the TPF was obtained by means of the 
energy-flux method for the case of total reflection (Kristoffel 1956, Imbert 1972, Fedorov 
1977). Denote by h‘,“:, the TS of the totally reflected light beam obtained by means 
of this method. The formula for h‘,“:, can be found in equation (12) of Imbert (1972) 
or equation (5) of Fedorov (1977), for instance. Applying these equations for a 
wavebeam of finite thickness and keeping in mind that the power flux on the strip of 
the interface of a unit dimension in a direction is equal to (n(’))-’u,  one can express 
the quantity hgGM as E F M - n  - ( I )  -’ p 2  ( 2 )  

Two assumptions are made in developing the energy-flux method. First, the TPF 

is assumed to be associated only with the inhomogeneous wave field, i.e. within this 
method P2= P:”. Second, in this method an assumption known as the ‘energy-flux- 
conservation argument’ (Imbert 1972) is used, i.e. it is assumed that on total reflection 
the incident light ‘dives’ into a less dense medium at some place of the interface 
re-emerging in a denser medium in another place. This assumption seems to be 
incorrect, as discussed by the author in connection with the longitudinal motion of 
electromagnetic energy (Fedoseyev and Adamson 198 1, Fedoseyev 1986). Neverthe- 
less, owing to its applications, the ratio hyGM(Pi2))-’ proves equal to the ratio h‘”’P;’ 
which is obtained from (22b) for total reflection when T=O and h = h ( p ) .  (Note that 
the ratios ( 2 2 4  6) are obtained without any assumption about the process of motion 
of energy on reflection and transmission of electromagnetic waves.) So, in the case of 
total reflection, the reason for the numerical difference between the values h ( p )  and 
hz“F‘, is caused by the difference between P2 and Pi2) .  

Consider the TPF phenomenon. Based on conservation law (9a),  one can conclude 
that the TPF cannot be confined to the inhomogeneous wave field. Indeed, if on total 
reflection the TPF equal to Pk2)( t ) ,  associated with the evanescent wave field, exists in 
a less dense medium then, in accordance with (30a, b), the TPF equal to P:”(t) = 
- E P ~ ) (  t )  should exist in a denser medium, where there are no inhomogeneous waves. 
This conclusion contradicts the traditional point of view on the TPF phenomenon, 
being in agreement with the author’s recent paper (Fedoseyev 1987), which shows that 
in a general case the TPF is associated with the fields of both inhomogeneous and 
homogeneous waves, and that in a denser medium the interference TPF also exists. 

De Beauregard et a1 (1971) regarded the non-zero value of P:”(t) (or, more 
generally, Gi2’( t )  = &(2’S:2’( t ) )  on total reflection as an ‘unsatisfactory fact’ of the 
Minkowski energy-momentum tensor. One can see that their objection against this 
tensor is nullified if one takes into account the TPF in the second as well as in the first 
medium. 

It is evident from the above discussion that the value of the TS of a totally reflected 
light beam obtained by the energy-flux method differs from that calculated by means 
of (22b) by the factor (1 - E ) - ’  (see (30b)). It is just the difference between the values 
of obtained in the case of total reflection by the stationary-phase and energy-flux 
methods. Hence, one can explain this difference on the basis of the conservation law 

Let us discuss relation (20). Its physical meaning is as follows. MI( t )  is the constant 
of motion of the electromagnetic field. Hence, if the normal component of the intrinsic 
angular momentum of the electromagnetic field changes during reflection and trans- 
mission, then the field should be shifted in the transverse direction in order to evoke 
an opposite change of the normal component of the orbital angular momentum. 
Qualitatively, this interpretation of the TS phenomenon resembles de Beauregard’s 
point of view on the TS as ‘a translational inertial spin effect’ (de Beauregard 1965). 

(gal.  
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However, it should be stressed that the intrinsic angular momentum in (20) and (27) 
is the Minkowski one. 

Relation (20) gives a new method for calculating the quantity h (equations (20a) 
and (27a)). Expressing the polarisation vectors of wavepackets through the com- 
ponents of the electric field vectors (28), one obtains the result (equations (20a) and 
(27b)) which is convenient to compare with the previous calculations of h'" and h"'. 
For total reflection the value h ( p '  calculated by means of (20a) and (27b) differs from 
the result of de Beauregard (1965) and coincides with that obtained by the stationary- 
phase method (Schilling 1965). For partial reflection the value h, obtained from (20a) 
and (27b), is in accordance with the previous calculations of h ( p '  (Schilling 1965, 
Fedoseyev 1985) and h"' (Fedoseyev 1985). 
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Appendix. Electromagnetic energy, centre of gravity, momentum and angular 
momentum of incident, reflected and transmitted quasimonochromatic wavepackets 

E"'(x, r , )  and H"'(x, t,) are the electric and magnetic field vectors of the j t h  wavepacket 
at the instant t,. 

The electromagnetic energy density w")(x, t,) and the Minkowski momentum 
density g'"(x, t,) of the j t h  wavepacket at instant t, are 

&(jJ 

g"'(x, t,) =- 4rr E"'(x, r,) x H'J'(x, t , )  

where & ( J , P )  = E ( 1 )  and e ' ' ' =  E"' .  

The electromagnetic energy W"'( r,), the Minkowski momentum GtJ'(  r,), the Mink- 
owski angular momentum M'J'(t,) and the radius vector of centre of gravity X " ) ( t , )  
of the j th  wavepacket at instant t, are as follows: 

W"'( t,) = w("(x, t,) dx ('43) I 
r 

G"'( t j )  = I g'j'(x, 5 )  dx 
J 

Xi"( t , )  = ( W'"( t,))-' xw( , ' (x ,  t,) dx. (A6) I 
The angular momentum of the j th  wavepacket is the sum of the orbital and intrinsic 
angular momenta 

M"'( t,) = L"'( t,) + I ( ' ' (  t,) (A71 
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r 
I ( / ) ( ? , )  = r") x g'"(x, 5 )  dx J 

and r") = x - X"'( f j ) .  

The integration in (A3)-(A6) and (A9) is performed over the volume of the first 
medium for j = i, p and over the volume of the second medium for j = T. 

At instant f 2  the electromagnetic field of the reflected packet is the total electromag- 
netic field in the first medium; hence, combining (8) with (A3), (9) with (A4) and 
(13a) with (A5), we obtain 

W (  t2) = w = wip'( r2)  + wi"( t z )  

C (  t * )  = c q  t z )  + Gi"(f2) 

M( tz) = M(")(  r2) + M("( t2). 

(AlOa) 

(AlOb) 

(AlOc) 

Using (16) and (A6) we get 

W'P'( f*)  W'"( t z )  
X'P'( t * )  $7 X'"( t 2 ) .  

W W X(t2) = (AlOd) 

According to the definition of t ,  and r2 the quantities Wi"( f,), G'"( f,), X'"( f,) and 
Mi,'( 4 )  are approximately the electromagnetic energy, the Minkowski momentum, the 
radius vector of the centre of gravity and the angular momentum of the j t h  wavepacket 
moving in the homogeneous medium of the dielectric permittivity E " ) .  When calculating 
these quantities, instead of integrating over the half-space in (A3)-(A6) and (A9), we 
can integrate over the total space with the dielectric permittivity .si'). 

Let us make the Fourier transform of the vectors E'"(x, t,) and H"'(x, t,): 

1 
H"'(x t . )  =- Re H"'( k)  exp( -ik r' j ' )  dk. 

(2 Ti 3 / 2  
, J  

( A l l a )  

(A1 1 b) 
- 

Note that at  an  arbitrary instant t the time dependence of the vectors E ( " ( k )  and 
, ( , ) (A)  is given by a factor exp(iw(k)f), where w 2 ( k )  = (&(")-'k*. The scalar products 
E ( ' ) ( k )  E'"(k') and H( , ) (k )  Hi')(k') as well as the complex conjugates and  the 
corresponding vector products oscillate at the frequency -2w,, where wo = 2rh - I .  In 
further calculations these products will be omitted. 

Let us introduce the following notation: 

e ' J ' ( k )  = / E ' J ' ( k ) l - ' E ' J ' ( k ) .  ('412) 

Here e"'(k) is the unit polarisation vector of the plane electromagnetic wave with the 
wavevector k present in the j t h  packet, 

e '"=  - e c " ( ~ ' J ' )  (A12a) 

being a unit polarisation vector of the j t h  wavepacket. 
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The vectors k,  EiJ’(k)  and H‘j’(k) satisfy the relations 

k * E ” ’ ( k )  = 0 

Hi’’(,) = (n iJ ’ /k)kxEi’ ’ (k)  ( ~ 1 4 )  

(A131 

which follow from the Maxwell equations, n‘”  = ( E ‘ ” ) ’ ’ ~ .  

used: 
When calculating the quantities G”’( t,) and I i ” (  t)), the following function will be 

g ‘ ” ( k ,  k’) - (Ei)’(k’) x H‘”* ( k )  + E”’*(k) x H(’ ’ (k ’ ) ) .  
16rr (A151 

Substituting (A14) into the right-hand side of (A15) and performing some transforma- 
tions of vector products with the use of (A13), one can transform this function into 
the form 

(A15a) 

Substituting (Al la ,  b) into (Al) ,  and the result into (A3), and using (A13) and 
(A14) we get 

Analogously, substituting (Al la ,  b) into (A2), and the result into (A4) and using 
(A15a), we get 

For every index j the wavevector k can be presented as k = K$’“”+ K Y ’ ,  where 

us denote the half-widths of the functions E i J ’ ( k )  and H ( ’ ’ ( k )  in the mi’), a and 6”’ 
directions by A K $ , ~ , ~ .  The half-widths are connected with the dimensions of the packets 
as follows: AK;’ - 0;’ , AKI;“ - 0,’ , A K ~ ’  - D;’. As AK$, \ ,~  << kiJ’ ,  the factor k-’k 
in (A4a) can be expanded into a series, while in the first order in A D , ;  we have 

K ( J )  = K ,  (1 )  a + ~2’6”’ is the component of the wavevector k perpendicular to m”’. Let 

The substitution of (A16) into (A4a) yields in the first approximation 

GiJ’(t,) = n‘J’W‘J’(t,)m”’. (A4b) 

By the use of Snell’s laws (A4b) is transformed into the relation 

Substituting (AlOb, d )  into (15) and using (9a, b)  and (A17), we get 

L,( t 2 )  = L i p ’ (  t*) + PiT’( t2).  (A181 
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Substituting (136) into the left-hand side of (AlOc) and (A7) into its right-hand side 
and using (A18) one gets 

I , (  t 2 )  = IjlJ’( t z )  + PiT’( t 2 ) .  (A191 

Let us calculate the intrinsic angular momentum of thejth wavepacket. Substituting 
( A l l a ,  b) into (A2), and the result into (A9) and using the definition of the quantity 
g”’ (k ,  k ’ )  (A15), we obtain 

On calculating Z ( ’ ) (  5 )  the terms small in comparison with A W(”( 5 )  will be omitted. 
In this approximation the expansion (A16) can be used in (A15a). We can also neglect 
the dependence of the polarisation vector e ( ’ ) (k )  on k in the terms containing the 
factor AK(LJ) .  Taking that into account, the function g‘”( k, k ’ )  can be divided into three 
parts: 

g‘”(k,  k ’ ) + ( k ,  k ’ ) + g “ ’ ( k ,  k’)+giJ2’(k,  k ‘ )  (A15b) 

where 

gl”(k,  k ’ )  = ~ ( n ( J ) ) 3  (E ( .” (k ’ )  . E(J)*(k) )m( . l )  (A211 

(A221 

(A23) 

8?T 

& ( J ) A  
g y ( k ,  k ’ )  =- IE”’(k)l lE(’)(k’)l(Kt’+ IC:(’) 1 

32r2  

g y ( k ,  k ’ )  = - E ( ’ ) A  lE(J)(k)l / E ( J ) ( k f ) l ( K y )  - x : ( J ) )  x x 
3 2 ~ ’  

The integral in the right-hand side of (A20) containing the function giJ’(k,  k ’ )  is equal 
to zero. One will be convinced of that if one first performs integration over k and k’ 
and then takes into account that (see (A6)) 

d ’ ) w ( ’ ) ( x ,  6) dx = 0. I 
The integral containing the function g v ” ( k ,  k ‘ )  is also equal to zero as its sign 

changes on the following simultaneous substitution of variables in (A20): 

k +  k’ k’+  k x + -x + 2X‘”( t , ) .  

In order to calculate the integral in the right-hand side of (A20), containing the 
function g(LJ2’(k, k ’ ) ,  let us use the identity 

d 
dk 

r(’)  exp[i(k - k ‘ )  9 d”]  = -i - exp[i(k - k ’ )  - r ” ) ]  

and first perform integration over k by parts and then integration over x. Further 
calculations of this integral are straightforward. Using ( A ~ u ) ,  we finally obtain in the 
first approximation 

(‘496) 
A 

2.rr 
z ( J ’ ( ~ ~ )  = -i - W”’(5)e‘J’  x e”’*, 
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